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ABSTRACT HemoHIM is a standardized medicinal herbal preparation consisting of extracts of Angelica gigas Nakai,
Cnidium officinale Makino, and Paeonia lactiflora Pallas that possesses immune regulatory activities. This study aimed to
research the potential antioxidant effects of HemoHIM and its capacity for reducing fatigue in aged mice subjected to forced
exercise. After administering HemoHIM 125 (500 mg/kg orally) for 4 weeks in 8-month-old female C57BL/6 mice (4 groups
of 10 mice), various parameters were evaluated. The analyses revealed that HemoHIM enhanced swimming time and grip
strength. In addition, it significantly reduced serum lactate levels and increased liver glutathione peroxidase (GPx) levels after
exercise challenge. The expression levels of antioxidant enzymes and factors, including nuclear factor erythroid 2-related
factor-2 (Nrf-2), heme oxygenase 1, superoxide dismutase, GPx, and glutathione reductase, were significantly higher in liver
and muscle tissues of mice treated with HemoHIM. These results indicate that HemoHIM might function as an anti-fatigue
and antioxidant agent by modulating the Nrf-2 signaling pathway.
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INTRODUCTION

FATIGUE IS AN unstable physiological condition that in-
cludes tiredness and weakness and can be physical, mental,
or acombination of both.! Fatigue can also be caused by illness,
but it often occurs in daily life due to lack of sleep or stress, and
can be accompanied by physical or mental fatigue.'-?
Numerous theories regarding the mechanisms related to
physical fatigue have been proposed, such as the radical
theory and exhaustion. According to the radical theory, the
accumulation of reactive free radicals promote oxidative
stress. Increased oxidative stress during these processes can
impair cellular functions, leading to aging and various phys-
iological abnormalities.? Free radicals cause physical fatigue
during excessive physical activity. Reactive oxygen species
(ROS)-induced lipid peroxidation can impair the integrity of
the cell membrane resulting in oxidative fatigue in skeletal
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muscle,*> which can lead to cell aging and death. Both oxi-
dative stress and damage affect aging-associated diseases,
such as cancer, diabetes mellitus, and hypertension.®’

Skeletal muscle fibers continuously produce ROS during
muscle contractions. In particular, ROS levels increase
during intense exercise, which contributes to muscle fatigue.
Thus, the antioxidants that regulate ROS levels may be the
most important factors in anti-fatigue mechanisms.®

Nuclear factor erythroid 2-related factor-2 (Nrf-2) is an
important marker of antioxidant signaling. Nrf-2 modulates
the expression of genes encoding phase II detoxification
enzymes and antioxidants such as heme oxygenase 1 (HO-1).
Nrf-2 is negatively regulated by Kelch-like ECH-associated
protein 1 (Keap-1), which is also associated with the HO-1-
mediated antioxidant pathway.”!°

HO-1 protects cells exposed to oxidizing agents by cat-
alyzing the oxidation of heme to biologically active agents,
for example, Fe** and CO. The final products produced from
heme catabolism neutralizes intracellular ROS and exerts an
antioxidant effect.'’ Several studies have reported that the
Nrf2 pathway is associated with a protective role against
oxidative stress and fatigue.

Hot water extracts of the roots of Angelica gigas Nakai
(Angelica Radix), Cnidium officinale Makino (Cnidium
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Rhizoma), and Paeonia lactiflora Pallas (Paeonia Radix)
were used to prepare HemoHIM and a polysaccharide
fraction.'>!3 All three herbs are traditional Korean plants
used in herbal medicine with several pharmacological ac-
tivities, such as antioxidant, anti-inflammation, and anti-
microbial effect."'® HemoHIM is a standardized
preparation that influences on the immunoregulation and
causes the maturation and activation of dendritic cells.'”'8

The key compounds are gallic acid, nodakenin, chloro-
genic acid, and paeoniflorin. HemoHIM and its compounds
have been studied to control the immunity,'”"'® exert anti-
inflammatory effects,' and protect against oxidative stress
and H,0,-induced apoptosis.?° In our previous study, He-
moHIM improved exercise ability and decreased fatigue and
oxidation in ICR mice.?! However, there are no studies on
the anti-fatigue effects of HemoHIM in aged mice. In this
study, we investigated the antioxidant and anti-fatigue ef-
fects of HemoHIM on fatigue in aged mice.

MATERIALS AND METHODS
Preparation of HemoHIM

HemoHIM was manufactured with reference to Jo et al.>
The standardized HemoHIM contained nodakenin (50—
150mg/100 g), chlorogenic acid (25-60mg/100g), and
paeoniflorin (200-400mg/100 g). It was manufactured by
HK Kolmar BNH Co., Ltd. (Batch No. HHHO10). The roots
of A. gigas, C. officinale, and P. lactiflora were extracted by
the hot water extraction method. A portion of the extracted
material was precipitated with 95% ethanol to obtain a
polysaccharide fraction. Finally, the HemoHIM with the
polysaccharide fraction was concentrated to a solid content
of 30% +3% and freeze dried.

Animals and experimental protocol

Eight-month-old female C57BL/6 mice (DooYeol Bio-
tech, Korea) were used (4 groups of 10 mice). The animals
were acclimated for 1 week and were housed in a climate-
controlled facility with a temperature of 22°C+3°C and
humidity of 50% +5% and a 12h light-dark cycle. Mice
were divided into the following groups: (1) control group,
(2) HemoHIM 125 mg/kg, (3) HemoHIM 500 mg/kg, and
(4) creatine 625 mg/kg. The control group was orally ad-
ministered only 0.5% carboxymethylcellulose, whereas the
other group was orally administered HemoHIM at the as-
signed concentration for 4 weeks.

Motor behavior analysis using a grip strength test

The mice were pretrained on a grip strength test twice a
week before the test on O day. The grip strength test was
performed once a week. The grip strengths of the control and
the HemoHIM groups were measured using a grip strength
meter (model JD-A-22; Jeungdo Bio & Plant, Korea). The
mice tails were suspended perpendicular to the grid, and it
was able to hold the metal grid of the meter with all four feet
until the front foot reached the end of the grid. The tests were

performed in triplicate and the results are expressed as the
average of the measured data in kilograms-of-force units.

Motor behavior analysis using a forced swimming test

On day 0, the mice received pretraining using the forced
swim test (FST) twice a week before the test. The mice were
forced to swim in a pool filled with water at 25°C+1°C.
There were weights added at 5% of their body weight to
increase their exercise load. Swimming time was measured
until the noses of the mice began to sink below the surface
and remained at least 5sec during exhaustion. FST was
performed once a week after the grip test, and tissue analysis
was performed on the last day.

Biochemical analysis

Serum was collected by cardiac puncture and centrifuged
at 158 g for 15 min (Smart R17 Centrifuge; Hanil Scientific,
Inc., Korea). Serum L-lactate level was determined using an
L-lactate assay kit (ab65331; Abcam, United Kingdom).

Hepatic assays

Liver tissue (10 mg) was homogenized (T25 digital Ultra-
Turrax; IKA®, Germany) and the homogenized tissues were
centrifuged at 158 g and 4°C. Liver malondialdehyde
(MDA), glutathione peroxidase (GPx), and catalase (CAT)
were measured using a lipid peroxidation (MDA) test kit
(ab118970), GPx test kit (ab102530), and CAT activity test
kit (ab83464; Abcam).

RNA isolation and reverse transcription—polymerase
chain reaction in vivo

Total RNA was extracted (Qiagen, Germany) from liver
and muscle samples, and the extracted RNA was quantified

TABLE 1. PRIMER SEQUENCES USED FOR REVERSE
TRANSCRIPTION—POLYMERASE CHAIN REACTION

Gene Direction Sequence (5 to 3')

Nrf-2 Forward TTCCTCTGCTGCCATTAGTCAGTC
Reverse GCTCTTCCATTTCCGAGTCACTG

HO-1 Forward CTGGAAGAGGAGATAGAGCGAA
Reverse TCTTAGCCTCTTCTGTCACCCT

Keap-1 Forward TGCCCCTGTGGTCAAAGTG
Reverse AGTCCTTGGAGTCTAGCCGAG

SOD Forward AATGTGTCCATTGAAGATCGTGTGA
Reverse GCTTCCAGCATTTCCAGTCTTTGTA

GSr Forward GGGCAAAGAAGATTCCAGGTT
Reverse GGACGGCTTCATCTTCAGTGA

GPx Forward CAGTTCGGACATCAGGAGAAT
Reverse AGAGCGGGTGAGCCTTCT

Txn Forward TTCCCTCTGTGACAAGTATTCCAA
Reverse GGTCGGCATGCATTTGACT

Gclc Forward GTCCTCAGGTGACATTCCAAGC
Reverse TGTTCTTCAGGGGCTCCAGTC

NQO-1 Forward GGCAGAAGAGCACTGATCGTA
Reverse TGATGGGATTGAAGTTCATGGC

CAT Forward TGTCCCCCACCATTGAACT
Reverse TCTGCAGATACCTGTGAACTG

p-Actin Forward GCCATGTACGTAGCCATCCA
Reverse GAACCGCTCATTGCCGATAG
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FIG. 1. Effect of HemoHIM on swimming time to exhaustion in the FST (a) and grip strength test (b). Data are expressed as mean+ SEM.
Comparisons were made between the control and HemoHIM groups (125 and 500 mg/kg). Significant differences from control group (*P < .05,
**P <.01). HemoHIM, standardized fraction of water extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas.

FST, forced swimming test; SEM, standard error of the mean.

using NanoDrop (Thermo Fisher Scientific, Inc., USA).
cDNA was synthesized using a high-capacity cDNA reverse
transcription kit (Applied Biosystems, USA), and then am-
plified using AccuPower PCR Premix (Bione, Korea). The
primers used are shown in Table 1. Electrophoresis was
performed using 1.8% agarose gel containing ethidium
bromide. f-Actin was used as a control, and the results were
analyzed using ImagelJ software (NIH, USA).

Statistical analysis

All experimental data are presented as means + standard
errors of the means. Data were analyzed by a one-way
analysis of variance (ANOVA) and Duncan’s multiple
range tests using GraphPad Prism 5.0 (GraphPad Prism
Software, Inc., USA). A P value <.05 was considered
significant.

RESULTS

HemoHIM enhanced swimming time and grip
strength in aged mice

Forced swimming and grip strength tests are among the
most frequently used models for evaluating fatigue in ani-
mal studies.> Swimming time and grip strength were
measured in the FST to confirm the anti-fatigue effect of
HemoHIM. Compared with the control group, the Hemo-
HIM 500mg/kg and creatine group had longer swimming
times (P <.05) and stronger grip strength (P <.01) (Fig. 1).
In addition, there was no significant difference in body
weight among all groups (Fig. 2).

HemoHIM decreased serum lactate levels after
forced exercise

Serum lactate levels were measured after forced exercise
to evaluate the effects of HemoHIM on fatigue. Lactate
levels in the HemoHIM-administered mice decreased dose-

dependently compared with those in the control group
(HemoHIM 125mg/kg, P<.05; HemoHIM 500mg/kg,
P <.05; Fig. 3).

HemoHIM increased GPx expression in the liver after
forced exercise

Antioxidant activity was determined on the basis of liver
CAT, MDA, and GPx levels. In the HemoHIM group, the
activity of CAT showed a tendency to increase compared
with control (Fig. 4a). MDA concentrations were lower in
the HemoHIM groups, but the differences were not statis-
tically significant (Fig. 4b). GPx concentrations in the He-
moHIM 500 mg/kg group were significantly higher when
compared with controls (Fig. 4c).

HemoHIM upregulated the Nrf-2/HO-1 pathway
and regulated other antioxidant factors in the liver
after forced exercise

To investigate the antioxidant and anti-fatigue effects of
HemoHIM, mRNA expression of genes related to the Nrf-2/
HO-1 pathway was measured in liver tissues. Nrf2 levels
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FIG. 2. Effect of HemoHIM on body weight changes of mice.
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FIG. 3. Effect of HemoHIM on lactate levels in serum after exer-
cise challenge. Data are expressed as mean*SEM. Comparisons
were made between control and HemoHIM groups (125 and
500 mg/kg). Significant difference from control group (*P<.05).
HemoHIM, standardized fraction of water extracts of Angelica gigas
Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas.

were elevated in the HemoHIM group compared with the
control group (Fig. 5a). Also, HO-1 expressions in the
HemoHIM groups were significantly upregulated in liver
tissue (HemoHIM 125mg/kg; HemoHIM 500 mg/kg,
P <.01; Fig. 5b).

In addition, Keap-1 expression in the HemoHIM
125 mg/kg group was downregulated compared with that in
the control group (P <.05; Fig. 5c); however, superoxide
dismutase (SOD) levels in both HemoHIM groups were
upregulated compared with controls (HemoHIM 125 mg/kg;
P <.05, HemoHIM 500 mg/kg; P <.05; Fig. 5d). In addition,
there was a statistically significant increase in glutathione
reductase (GSr) levels in the HemoHIM 500 mg/kg group
compared with the control group (P <.001; Fig. 5e).

The expression of GPx and thioredoxin (Txn) was upre-
gulated compared with that in the control group (GPx:

HemoHIM 125mg/kg, P<.0l; HemoHIM 500mg/kg,
P<.001; Txn: HemoHIM 500 mg/kg, P<.001; Fig. 5f, g).
Furthermore, the expression of glutamate cysteine ligase
catalytic subunit (Gclc) was significantly upregulated com-
pared with that in the control group (HemoHIM 125 mg/kg;
P <.01, HemoHIM 500 mg/kg; P <.001; Fig. Sh). HemoHIM
500 mg/kg significantly induced the expression of the anti-
oxidant factors NADPH quinone oxidoreductase-1 (NQO-1;
HemoHIM 125mg/kg; P<.001, HemoHIM 500 mg/kg;
P <.001; Fig. 5i) and CAT (HemoHIM 500 mg/kg; P <.05;
Fig. 5j) compared with that in the control group.

HemoHIM upregulated the Nrf-2/HO-1 pathway
and regulated other antioxidant factors in muscle
after forced exercise

To determine the anti-fatigue effect of HemoHIM on
exercise performance in mice, Nrf-2/HO-1 pathway genes
and antioxidant factors were measured in skeletal muscle
tissue after the final exercise. Nrf-2 expression in the
HemoHIM groups was significantly elevated compared with
that in the control group (HemoHIM 125 mg/kg, P<.001;
HemoHIM 500 mg/kg, P<.001) (Fig. 6a). Similarly, HO-1
gene expression was upregulated in the HemoHIM
500mg/kg group after exercise compared with that in the
control group (P <.01) (Fig. 6b).

In the HemoHIM group, Keap-1 levels showed a ten-
dency to decrease (Fig. 6¢). However, SOD levels were
significantly increased in the HemoHIM 125 mg/kg and
HemoHIM 500 mg/kg groups compared with those in the
control group (HemoHIM 125 mg/kg, P <.05; HemoHIM
500 mg/kg, P<.001) (Fig. 6d). GSr expression was signifi-
cantly upregulated by HemoHIM (HemoHIM 125 mg/kg,
P <.05; HemoHIM 500 mg/kg, P <.01; Fig. 6e).

In addition, GPx levels were higher in the 500 mg/kg
HemoHIM group than in the control group (P<.001;
Fig. 6f), and Txn levels showed a dose-dependent increase in
the HemoHIM groups (500 mg/kg; P <.001; Fig. 6g). Gclc
expression was significantly upregulated in the HemoHIM
500mg/kg group compared with controls (P <.01; Fig. 6h).
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FIG. 4. Effect of HemoHIM on CAT activity (a), MDA content (b), and GPx activity (c) in liver tissue after exercise challenge. Data are
expressed as mean = SEM. Comparisons were made between the control and HemoHIM groups (125 and 500 mg/kg). Significant difference from
control group (*P<.05). HemoHIM, standardized fraction of water extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia
lactiflora Pallas. CAT, catalase; GPx, glutathione peroxidase; MDA, malondialdehyde.
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FIG. 5. Effects of HemoHIM on (a) Nrf-2, (b) HO-1, (¢) Keap-1, (d) SOD, (e) GSr, (f) GPx, (g) Txn, (h) Gclc, (i) NQO-1, and (j) CAT mRNA
expression levels in liver tissue detected using RT-PCR after exercise challenge. Data are expressed as mean*SEM. Comparisons were made
between control and HemoHIM groups (125 and 500 mg/kg). Significant differences from control group (*P<.05, **P<.01, ***P<.001).
HemoHIM, standardized fraction of water extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas. Gclc,
glutamate cysteine ligase catalytic subunit; GSr, glutathione reductase; HO-1, heme oxygenase 1; Keap-1, Kelch-like ECH-associated protein 1;
NQO-1, NADPH quinone oxidoreductase-1; Nrf-2, nuclear factor erythroid 2-related factor-2; RT-PCR, reverse transcription—polymerase chain
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FIG. 6. Effects of HemoHIM on (a) Nrf-2, (b) HO-1, (c¢) Keap-1, (d) SOD, (e) GSr, (f) GPx, (g) Txn, (h) Gclc, (i) NQO-1, and (j) CAT mRNA
expression levels in muscle tissue detected using RT-PCR after exercise challenge. Data are expressed as mean + SEM. Comparisons were made
between control and HemoHIM groups (125 and 500 mg/kg). Significant differences from the control group (*P<.05, **P <.01, ***P <.001).
HemoHIM, standardized fraction of water extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas.

Finally, NQO-1 expression in the HemoHIM 125 mg/kg DISCUSSION
group (P <.05; Fig. 6i) and CAT expression in the Hemo-
HIM 500 mg/kg group (P <.001; Fig. 6j) were significantly In this study, we explored the effect of HemoHIM on

higher than the corresponding values in the control group. high-intensity exercise-induced fatigue in aged mice. The
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treated mice exhibited enhanced performance in forced
swimming and grip strength tests, thus demonstrating the
potential anti-fatigue activity of HemoHIM.

Fatigue is a common physiological response observed in
various conditions, including cancer, aging, and depres-
sion.* It can be categorized as either mental or physical
fatigue. Physical fatigue, which arises from intense exercise
or demanding physical labor, manifests as physical abnor-
malities, including sleep disturbances and lethargy. High-
intensity exercise can increase the production of ROS and
oxygen consumption, resulting in elevated oxidative stress
leading to oxidative damage.>

Studies such as those by Ma et al.?® and Oliveira et al.>’
have explored drugs such as melatonin and carvedilol,
which possess strong antioxidant properties but may entail
serious side effects. Recently, several studies have high-
lighted the potential of natural antioxidant medicinal plants
and herbs in reducing fatigue and exercise-induced oxida-
tive damage.?®2° Therefore, one strategy to suppress fatigue
involves eliminating or inhibiting the production of fatigue-
related metabolites during exercise.

In this study, we found increased CAT and GPx levels and
decreased MDA levels in the liver of HemoHIM-treated
mice, suggesting that HemoHIM could alleviate fatigue.
Exercise-induced protein oxidation leads to the production
of ROS and MDA, accompanied by an increase in the levels
of primary antioxidant enzymes such as CAT and GPx.*
CAT can reduce fatigue and alleviate other physiological
abnormalities by breaking down H»O; into H,O and O,
whereas GPx is responsible for reducing H,O, into water
and alcohol ?!32

Accumulation of ROS and MDA, as well as reduced
antioxidant enzyme levels, has been reported in chronic
fatigue. Therefore, it can be reasoned that reversing these
effects can help combat fatigue. We also found that He-
moHIM reduced blood lactate levels, potentially enhancing
the anti-fatigue effect. Blood lactate accumulation can lower
the pH value of the muscle tissue or blood, potentially
causing side effects in physiological responses.”?

Furthermore, HemoHIM regulated the expression activi-
ties of Nrf-2, HO-1, NQO-1, Txn, and Gclc by reverse
transcription—polymerase chain reaction (PCR) analysis of
liver and muscle tissue. In addition, HemoHIM activated the
expression of antioxidant-related enzymes and factors such
as SOD, GSr, GPx, and CAT. The Nrf-2 signaling pathway
is crucially involved in oxidative stress.*> Under normal
conditions, Nrf-2-dependent transcription is repressed by
the negative regulator Keap-1.

However, when cells or tissues are exposed to oxidative
stress environments, Nrf-2 avoids Keap-1 mediated inhibi-
tion and enters the nucleus, activating genes encoding anti-
oxidant and phase II detoxifying enzymes (Gclc), detoxifying
enzymes (GSr and NQO-1), and antioxidant enzymes (CAT,
GPx, SOD, and HO-1).3* Therefore, activation of the Nrf-2
signaling pathway is vital for antioxidation.

In summary, this study demonstrated that HemoHIM
exhibits an anti-fatigue effect in aged mice subjected to
forced exercise. This anti-fatigue effect was most likely

caused by the increased antioxidant activity of the enzyme
system, and the removal free radicals resulting in decreased
oxidative damage.

In conclusion, this study confirmed that HemoHIM ex-
hibits anti-fatigue effects in aged mice. The observed effects
included a reduction in lactate and MDA concentrations,
increased GPx and CAT activity, and improved exercise
performance. The underlying mechanism of these anti-
fatigue effects is thought to be associated with the antioxidant
properties of HemoHIM, exerted through the activation of the
Nrf-2/HO-1 signaling pathway and various antioxidant fac-
tors such as SOD, GSr, GPx, Txn, Gclc, NQO-1, and CAT.

The potential anti-fatigue activity of HemoHIM could
benefit both the general population and elderly individuals
experiencing fatigue. Although the exact mechanisms of
HemoHIM are yet to be elucidated, this study suggests the
use of HemoHIM as an anti-fatigue agent by showing sci-
entific evidence supporting anti-fatigue outcomes with He-
moHIM consumption.
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